
CDS Web Scraping Workshop

Tanish, Tyagi, Srivatsa Kundurthy

SP 24

OVERVIEW

What is Web Scraping?

Web crawling: the process of systematically browsing the World Wide Web,
typically for the purpose of Web indexing

Web scraping: the process of automatically mining data or collecting information
from the World Wide Web (typically a web page)

• might require some crawling to access information hidden behind links on a page

• involves downloading the web page (which a browser does when you view it) and
then extracting the content from it

Why Web Scrape?

For INFO 1998:
● Web sites generally have the

most up-to-date data →
automate the retrieval of
structured web data

● Allows more flexibility in
creating custom data sets

● More powerful than using APIs

Industry:
● Market Price Monitoring
● Competitor Price Monitoring
● Product Trend Monitoring
● Market Trend Analysis
● Consumer Sentiment Monitoring
● News and Content Monitoring
● Real-time Analytics

WEB SCRAPING
with Python 🐍

Getting Started in Python

The following libraries are the de-facto standard when it comes to web scraping in
Python. Let’s install them right now:

● requests - making HTTP requests in Python.
○ $ pip install requests

● beautifulsoup4 - pulling data out of HTML and XML files.
○ $ pip install beautifulsoup4

○ $ pip install lxml

(Note: you may need to use the command pip2/pip3 instead of pip depending on the version of Python you
have)

https://requests.readthedocs.io/en/master/
https://www.crummy.com/software/BeautifulSoup/bs4/doc/

The Big, Beautiful Web
aka the Internet

• A massive distributed client server information system with many running
applications

• How does the client and server communicate with each other?

https://www3.ntu.edu.sg/home/ehchua/programming/webprogramming/http_basics.html

HTTP
The foundation of data communication for the Web

HTTP in a Nutshell

HTTP (HyperText Transfer Protocol):
the standard protocol used to
structure the exchange of resources
over the web.

To browse the web, we use a
computer (e.g. laptop, phone,
desktop) and open a web browser to
type a Uniform Resource Locator
(URL) or go to a link from an existing
page.

from Khan Academy: “Hypertext Transfer Protocol (HTTP)”

https://www.techtarget.com/whatis/definition/HTTP-Hypertext-Transfer-Protocol

HTTP Request

• Resources on the web are typically hosted on a server. A client (e.g. web browser)
can perform a specific action on a resource by sending an HTTP request.

• There are a number of actions that a client can perform on a resource. For
example, to read a resource it sends a GET request, to send a resource it sends a
POST request, etc.

https://www3.ntu.edu.sg/home/ehchua/programming/webprogramming/http_basics.html

HTTP Response

• When a server receives a request from a client, it sends back information in the
form of an HTTP response.

• The response contains not only the requested information, but also additional
metadata like a status code as well.

https://www3.ntu.edu.sg/home/ehchua/programming/webprogramming/http_basics.html

Requests Library - Sending Requests

The requests library allows you to send HTTP requests extremely easily with
quality-of-life features like keep-alive & connection pooling, sessions with cookie
persistence, and more.

● GET requests
○ r = requests.get('https://www.google.com')

○ r = requests.get('https://www.amazon.com/s', params={'k': 'shoes'})

● POST requests
○ r = requests.post('https://example.com/', data = {'key':'value'})

● Also supports PUT, DELETE, HEAD, and OPTIONS requests.

http://www.amazon.com/s%27

Requests Library - Adding Headers

HTTP headers are typically sent along with an HTTP request or a response to pass
additional information between the client and the server.

Our plain request doesn’t contain any headers, so sites can easily figure out that it is
being sent by a bot and not by a potential consumer. Thus, the server might be
configured to send a response that doesn’t actually contain any data.

We can get around this by sending packets that specify a user agent in the header
to fool the server into thinking that the request was sent by a web browser:

r = requests.get('https://www.amazon.com', headers={'User-Agent': 'Mozilla/5.0'})

Requests Library - Response Objects

The request methods all return a Response object, which contains all the
information about the response sent by the server.

● Response Code
○ print(r.status_code)

>>> 200

● URL
○ print(r.url)

>>> https://www.amazon.com/s?k=shoes

● HTML content
○ print(r.text)

>>> <!DOCTYPE html> <!--[if lt IE 7]> <html lang="en-us" class="a-no- ...

http://www.amazon.com/s?k=shoes

HTML
and soup that is beautiful

HTML (HyperText Markup Language) is a descriptive language that specifies web
page structure.

An HTML document is structured by nested elements, which are surrounded by
matching opening and closing tags. Tags can be extended with attributes, which
provide additional information affecting how the browser interprets the element.

HTML In a Nutshell

BeautifulSoup Library - HTML Parsing

The BeautifulSoup library allows you to extract data from HTML (or XML)
content. It does this by constructing a parse tree from the nested elements of the
document and providing a plethora of ways to query objects in the tree.

The parse tree is constructed when we create a BeautifulSoup object. The first
argument contains the HTML and the second argument specifies the parser:

● soup = BeautifulSoup(r.text, 'html.parser')

● soup = BeautifulSoup(r.text, 'lxml')

Note: the lxml parser is supposedly much faster.

BeautifulSoup Library - Searching for Tags

BeautifulSoup makes it very easy to extract specific tags from the parse tree
using the find() and find_all() methods. These methods respectively find the first
tag or a list of all tags in the HTML parse tree that match the query you provide.

● Search by tag type
○ tags = soup.find('body') # finds the first <body> tag

● Search by id or CSS class attributes
○ tags = soup.find_all(id='bar', class_='icon')

● Search using a filter function
○ tags = soup.find(lambda t: t.has_attr('href') and not t.has_attr('img'))

● Search the nested structure of the document
○ nested_tags = soup.find('div', id='preview').find_all('a')

BeautifulSoup Library - Tag Objects

A Tag object corresponds to a tag in the original HTML document. The find() and
find_all() methods return a Tag object or a list of Tag objects respectively.

The attributes of the tag can be retrieved using dictionary syntax. The text enclosed
by the tag can be retrieved using the .text or .string attributes.

soup = BeautifulSoup('<div><p align="left">Ho ho ho</p><p>Yo</p></div>', 'lxml')

tag = soup.find('div').find('p') # returns the first <p> tag in the first <div> tag

print(tag['align']) # prints the value associated with the 'align' key

>>> left

print(tag.text) # prints text enclosed by tag

>>> Ho ho ho

Inspecting Web Pages

We’ve just learned how to extract data from HTML content, but how do we know
which elements we actually want to extract?

The answer is by inspection of the actual page.

● Windows: Ctrl + Shift + C
● Mac: ⌘ + Shift + C

It is helpful to first write the returned page to a file to inspect the HTML:

with open('page.html', mode='wb') as f:

f.write(r.content)

INTERACTIVE DEMO
It’s time to scrape

Demo Project - Scraping Reddit Comments

We’re going to be scraping Reddit, everybody’s favorite potty pastime.

Specifically, we will be building a dataset of the most popular comments of the most
popular posts of all-time! This dataset probably doesn’t exist already, especially
because the top posts and comments become outdated all the time. So, we turn to
web scraping.

0. Setting Up Jupyter Notebook

First, let’s set up our IDE: Jupyter Notebook.

• Make a new directory: $ mkdir directoryname

• Remove a directory: $ rm –R directoryname

• Change directory: $ cd directoryname

• Navigate one level up in directory: $ cd ..

• Run Jupyter Notebook: $ jupyter notebook

In Jupyter Notebook, create a new notebook and import necessary libraries:
import requests as rq

from bs4 import BeautifulSoup as bs

import lxml as lxml

import pandas as pd

1. Downloading the Top Posts Page

The first thing we need to do if we want to scrape the top comments of the top posts
on Reddit is to download the page containing the top posts of all time. The page
we want specifically is https://old.reddit.com/r/all/top/?sort=top&t=all.

We can request the page like so. Note the parameters and the user agent.

base_url = 'https://old.reddit.com/r/all/top/'
parameters = {'t': 'all'} # this is to sort by top of all time (check API)

user_agent = {'User-Agent': 'Mozilla/5.0'}

r = rq.get(base_url, params=parameters, headers=user_agent)

2. Inspecting the Top Posts Page

Next, we need to collect a list of links to the comments section of every post on
the page. To find the specific HTML tags those links correspond to, we can visually
inspect the HTML of the page we were returned.

with open('page.html', mode='wb') as f:

f.write(r.content)

Find some set of attributes (i.e. tag, id, class, or some combination of the three) that
uniquely correspond with the comments section link of every post.

2. Inspecting the Top Posts Page

with open('page.html', mode='wb') as f:

f.write(r.content)

3. Extracting Links to Comment Sections

Now that we’ve found a search parameter for the HTML elements we are trying to
extract, we can easily collect those elements using BeautifulSoup.

soup = bs(r.text, 'lxml')

link_tags = soup.find_all('a', class_='bylink comments may-blank')

The returned list contains tag elements, not the actual links. To extract these links,
we need to extract the value of the "href” attribute for each tag.

links = [tag['href'] for tag in link_tags]

4. Feature Selection

For each comment section link in our list, we want to extract every single comment
with some associated data about that comment. Deciding what data might or might
not be useful for our dataset is called feature selection and is a crucial step in
producing good results.

For each comment, we will collect the following associated data:

● Original post score
● Original post link
● Comment string
● Commenter name
● Comment score

For each link to a post in our list of links, we need to extract the score of the original
post. Like before, we can request the page of one link and write it to a file to visually
inspect the HTML.

r = rq.get(links[0], params={'sort': 'top'}, headers=user_agent)

with open('link.html', mode='wb') as f:

f.write(r.content)

Find some set of attributes (possibly nested) that uniquely correspond with the original
post’s score.

soup = bs(r.text, 'lxml')

score_str = soup.find('div', class_='linkinfo').find('span', class_='number').text

op_score = int(score_str.replace(',', '')) # because `Tag.text` is a string

5. Extracting Original Post Score

6. Inspecting the Comment Section

Extracting the post score was relatively easy. Extracting each comment together
with its metadata is a little more difficult and requires some more creativity.

We can parse down specifically to the comment section of the HTML like so:

comment_section = soup.find('div', class_='commentarea')

At this point it seems like visually inspecting the HTML could be helpful again.

with open('comment_section.html', mode='w', encoding="utf-8") as f:

f.write(str(comment_section)) # Note we use mode 'w' for writing a str

Find some set of attributes (i.e. tag, id, class, or some combination of the three) that
uniquely correspond with the container around each comment.

7. Extracting Comment Containers

Every comment is enclosed in a "div” element with the class attribute "entry
unvoted”. However, there are other "div” elements with that same class attribute.

The "div” elements that corresponded to comments exclusively contain a child "span”
element with the class attribute "score unvoted”, since that element actually
corresponds to the comment score. The "div” element that contains this "span”
element also contains the other data we want to extract from each comment, so we
want to find and store all of these "div” elements specifically.

We can use the information above to search for the tags using a filter function:

comment_filter = lambda t: t.find('span', class_='score unvoted') is not None

comments = soup.find_all(comment_filter, attrs={'class': 'entry unvoted'})

Now that we have a list of every comment container in the comment section, we

can extract the relevant data for each comment by finding the tags that they correspond
to. Iterate over the list and store each comment in a pandas Dataframe object.
features = ['post score', 'comment score', 'link', 'commenter', 'comment']

 data = pd.DataFrame(columns=features)

for container in comments:

commenter_tag = container.find(class_='author')

commenter = commenter_tag.text if commenter_tag is not None else '[deleted]'

comment = container.find('div', class_='usertext-body').text.strip().replace('\n',

' ')

score = int(container.find(class_='score unvoted')['title'])
data = data.append(dict(zip(features, [op_score, score, links[0], commenter,
comment])), ignore_index=True)

8. Extracting Comment Data

9. Saving the Scraped Data

Once we’ve scraped all the relevant data, we need to be sure to save it.

As we saw just now, one way to save our data is to store it in a pandas Dataframe
object. Then, we can simply write that Dataframe object to a CSV, JSON, etc. after
collecting the data.

Define dataframe
features = ['post score', 'post link', 'score', 'commenter', 'comment']
 data = pd.DataFrame(columns=features)

Data collection code; remember to iterate over all the links on the page!

...

Write dataframe to csv
data.to_csv('reddit_comments.csv', index=False)

Resulting Dataset

We just finished building a simple, custom dataset of the top comments on the top
posts of Reddit! We can inspect our dataset using pandas Dataframe methods.

data.sort_values(by='comment score', ascending=False).head(8)

ETHICS
"With great power comes great responsibility”

Denial of Service Attacks

As a human browsing the web, you can only send so many requests to a server at a
time. But with a web crawler, you can easily execute thousands of requests in just a
few seconds. If the server receives more requests than it can handle, it could become
overloaded and stop fulfilling legitimate requests altogether. This is called a
Denial of Service (DoS) attack.

You should be smart about how often you send a request. For example, you should
only send one request per page and save it locally if you need to use it again. If you
are sending many requests, send them slowly instead of all at once.

Some websites will even throttle or block your IP address altogether if they detect
an unusually high amount of requests.

https://en.wikipedia.org/wiki/Denial-of-service_attack#IPS_based_prevention

Robots Exclusion Standard

The robots exclusion standard is a web standard used by websites to communicate to
web crawlers which pages it can and cannot request. It is primarily used to manage
crawler traffic by whitelisting and blacklisting certain parts of the site.

It can be found by simply appending "robots.txt” to the base URL of any website
(e.g. https://www.reddit.com/robots.txt, https://www.amazon.com/robots.txt,
etc.)

This is just a standard, meaning it is not explicitly enforced. But as a programmer
utilizing a site’s resources at their expense, you should respect this standard.

If you really need to access a blacklisted part of a website, your web crawler should
emulate a human by throttling the rate of requests to prevent getting blocked.

https://en.wikipedia.org/wiki/Robots_exclusion_standard
https://www.reddit.com/robots.txt
https://www.amazon.com/robots.txt

TIPS
Learning web scraping beyond this presentation

How to Google 101

Learning to Google isn’t hard, but learning how to Google well is only slightly harder
so why not just master it?

• Useful for debugging, finding documentation, figuring out what to learn and how
to best learn it

• (Semi-blind) Debugging: copy-paste error messages BUT do not blindly follow
online solutions without understanding the context

• Documentation: view it from the creator’s perspective and figure out how things
work using documentation

• https://requests.readthedocs.io/en/latest/

• Ask the right questions that help you progress to a solution

https://requests.readthedocs.io/en/latest/

THANK YOU
Questions?

